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LETTER TO THE EDITOR 

Epidemic models and percolation 

John L Cardyt and Peter GrassbergerS 
t Department of Physics, University of California, Santa Barbara, CA 93 106, USA 
$ Physics Department, University of Wuppertal, Gauss-Strasse 20, D 5600 Wuppertal 1, 
West Germany 

Received 15 January 1985 

Abstract. We argue that local epidemic models with immunisation are in the same univer- 
sality class as percolation cluster growth models, and show that the static exponents are 
equal to all orders in the E expansion. We calculate the dynamic exponent Y, = 
1 + & E  + O ( E ~ )  and relate this to other exponents involving the chemical distance. 

In the past few years, a number of papers have appeared which describe the growth 
of random clusters on a lattice (Alexandrowicz 1980, Grassberger 1983, Cardy 1983, 
MacKay and Jan 1984; for reviews of previous work, see Mollison 1977, Bailey 1975). 

These models have in common the inhibition of growth at previously occupied 
sites which prevents them from being branching processes, and the existence of a 
growth parameter p .  There is a critical value pc ,  such that for p < p c  the clusters grow 
only to a finite size, while at p = p c  power-law behaviour is obtained. 

In this letter we describe the field-theoretic formulation of these problems and 
show that they fall in the same universality class which also describes the problem of 
chemical distance in percolation clusters. 

For definiteness consider the following microscopic kinetic models of cluster growth. 
(A) At a given time t a site is either vacant, occupied or immune. An immune site 

is one which has been occupied in the past. At time t + l ,  a vacant site becomes 
occupied with probability p if at least one of its neighbours is occupied at time t .  
Otherwise it remains vacant. An occupied site at time t becomes immune at time t + 1. 
However, immunisation is not perfect, and an immune site may become re-occupied 
with probability p - q if, once again, one of its neighbours is occupied. This model 
has been considered by Cardy (1983) who gave a field-theoretic version and calculated 0 
the critical exponents to first order in an E = (6 - d )  expansion. 

(B)  More generally, one might assume that the probability that a site becomes 
occupied depends on the number n of occupied neighbours. In model (B) we assume 
that the chances of 'infection' across each bond are independent. Then this probability 
is P = 1 - ( 1 - p ) "  for a vacant site, and P' = 1 - ( 1 + q - p ) "  for an immune. 

In the case p = q any bond can be tried only once, since at a second try one of the 
neighbouring sites is completely immune and no infection can pass. Thus, the clusters 
of immunes are, for t + a, clusters of bond percolation. This model has been studied 
by Grassberger (1983) as a model of epidemics. A similar model was treated by 
MacKay and Jan (1984). 

5 An error was made in this calculation which is corrected in this letter. 
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(C) In addition to models leading to bond percolation, one can discuss processes 
leading to site percolation (Alexandrowicz 1980, Pike and Stanley 1981, Grassberger 
1983). 

(D) This is a reaction-diffusion model in which random walkers W diffuse across 
the lattice, giving birth to offspring and dropping 'poison' as they go. The poison 
neither dihses  nor disappears, and walkers are killed if they hit a poisoned site. The 
microscopic processes are 

(i) w s w + w  
(ii) w l  W+P 

B 
(iii) W+P+P. 

The connection with models A and B is that the positions of the poison define the 
immune sites and those of the walkers the infected sites; (i) corresponds to the process 
of infection, and (ii) to immunisation. 

While models A, By C and D are microscopically different, the essential processes 
involved are identical and we may expect them to be in the same universality class. 
In what follows we construct a field theoretic formulation of model D and show that 
the most singular diagrams are those considered by Cardy for model A. We then show 
that the static limit of these diagrams gives those of the percolation problem in 6 - E 

dimensions, to all orders. Thus all these models fall into the same universality class. 
The static exponents (to be defined below) are those of ordinary percolation, and we 
are able to calculate the dynamic exponent in the E expansion. 

The field theory for the reaction-dihsion model D is readily derived using the 
methods of Grassberger and Scheunert (1980) (see also Doi 1976a, b). Introducing 
fields w', W and P+, P which create and annihilate walkers and poison respectively, 
the Liouvillean operator is 

9 = DV w+ - v w- a( 1 + w') w+ w - CY( 1 + W+)P+ w+ p(  1 + P+) w' WP. (1) 

This corresponds to an action 

A = dt ddx[ w' W +  P'P+ a. I 
In the Feynman diagrams, there are two causal propagators shown in figure 1, ccrre- 
spQnding to walkers and poison respectively. The vertices are shown in figure 2. The 
most infrared singular diagrams have a maximum number of insertions of the vertex 
(c) (P'W). This means that they will involve only the vertices (a), (c) and (d) and 
not the vertices (b) or (e). These diagrams have precisely the same form as those of 
the field theory version of model A (see figure 1 of Cardy (1983)). Note, however, 

(w.kl ---+--- = ( - iu+c i - '  

Figure 1. Bare propagators. Here A = U=- U and E + O+. 
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Figure 2. Vertices of the field theory. Only (a), (c) and (d) are relevant. 

that this model did not include the irrelevant vertices (b) and (e). Thus we may assert 
that these models are in the same universality class (to all orders in the E expansion) 
but they are not identical. 

The renormalisation group analysis of this model follows closely that of directed 
percolation (reggeon field theory, Abarbanel and Bronzan 1974, Cardy and Sugar 
1980), and we shall not give the details. The Fourier transform of the correlation 
function ( W(t ,  x) W+(O, 0)), which gives the probability of finding walker at ( t ,  x), 
given that there was just one at (0, 0), satisfies a scaling law 

G(o, k) = k-Z+"@(oA"~,  kA") 

I . - l - i  

(3)  

Y, = 1 +&E. (4) 

where A = U=- V E  ( p c  - p ) .  To first order in the 6 - E expansion we find 

77 =-Tie, - 2  84&, 

We see that the static exponents 7 and Y agree with those of percolation to O ( E )  
(Hams et a1 1975, Amit 1976). We now show that this result is valid to all orders. 
The argument proceeds by induction. Consider the nth-order contribution to the 
( N  + M) one-particle irreducible vertex function, I - . ( N , M ) .  It satisfies an equation shown 
diagrammatically in figure 3, where the vertex function I ' (N ,M+' )  will be evaluated to 

Figure 3. Integral equations for the vertex functions. 

order ( n  - 1). Suppressing all non-essential dependences, this equation is 

r ( N M )  d o '  ddq r(N.M+I)(of, q ;  - d, p - 4) = 
(-io'+ Dq2+A)[-i(o - U ' )  + D( p - q)2+A]  

In the static limit o = 0 the factor in braces becomes 27d(w'), which therefore sets 
w ) = o  in r ( N . M + I )  . c ompleting the induction, we see that the static vertex functions 
satisfy the equations illustrated in figure 4, where now the propagator means (Dq2+ 
A ) - ' ,  and the loop integrations involve ddq/(27r)d. These then are the vertex functions 

Figure 4. Static limit of figure 3.  
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of a theory with the vertices of figure 5 ,  but the diagrams will have the same topological 
structure as those of the original dynamic theory, that is they will be causal. No 
diagrams with closed loops of arrows will appear. This is the field theory formulation 
of ordinary percolation as given by Essam (1980) and Benzoni and Cardy (1984), 
which gives a simpler structure than the more conventional q + 1 Potts model. 

4 >t 
Figure 5. Vertices of the field theory corresponding to figure 4. 

We conclude that to all orders in the E expansion the static exponents of models 
A, B, C and D should agree with those of percolation. In particular the fractal 
dimension of the clusters at p c  will be 

On the other hand, the exponent v, is unrelated to the static exponents and gives the 
average radius of a cluster at p c  at time t as R - t ”’”~. The shortest path, or chemical 
distance (Pike and Stanley 1981, Hong and Stanley 1983a, b, Herrmann et al 1984, 
Rammal et a1 1984, Vannimenus et a1 1984, Grassberger 1984) between two points on 
the infinite cluster a distance r apart scales like rs,  where S = v,/ Y = 2 -:E + O( E’). In 
a recent paper, Havlin and Nossal (1984) conjectured that 

dF = Y-’ + S. (71 
We see that this is incorrect to O(E).  

In conclusion we have argued that, contrary to a previous claim by one of us, 
epidemic models with immunisation are in the same universality class as percolation. 
Our field theoretic formulation gives the first &-expansion result for the dynamic 
exponent Y, which is related to the chemical distance. It would not be difficult to 
extend this result to higher orders in E if desired. 

This work was supported in part by NSF grant PHY83-133240. 

Note added. After submission of this letter, we learned that results identical to those reported above have 
been obtained by H K Janssen (University of Diisseldorf preprint). 
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